Riverside Interim Assessments Blue Prints

Mathematics

Grade 2-11

RIVERSIDE

Developed to the Common Core State Standards Blue Prints

Common Core State Standards define the knowledge and skills students should have within their K-12 education careers so that they will graduate high school able to succeed in entry-level, credit-bearing academic college courses and in workforce training programs. The standards:

- Are aligned with college and work expectations;
- Are clear, understandable and consistent;
- Include rigorous content and application of knowledge through high-order skills;
- Build upon strengths and lessons of current state standards;
- Are informed by other top performing countries, so that all students are prepared to succeed in our global economy and society; and
- Are evidence-based
- More coherent and less broad

The Standards are structured very differently from most state standards. The Standards approach concepts and domains at a very much deeper level, ensuring that curriculum and standards far apart. These new standards differ from many current standards by including fewer, but broader, domains at each grade or course. However, each domain is addressed more deeply at each grade, ensuring that the content at each level is reasonable in scope, instructionally manageable, and promotes depth of understanding. Because of this, the Common Core State Standards are changing the way educators plan and deliver instruction, as well as the way they assess students' knowledge of these standards and RPC is working to capture all of these changes and implement this theory into our assessments.

Riverside knows that districts still need to be able to take a snapshot of student performance at fixed times across the school year in order to have data that show how well the district is performing in terms of the Common Core Standards. Therefore, we have developed a series of summative assessments for Grades 2-8 and high school that are aligned to the Common Core State Standards in Mathematics and English Language Arts/Literacy. Each grade and content area set of assessments will consist of a pre-, mid-, and post-test that will cover the broad scope of the entire set of the Standards for each content area and grade. The blueprints for these assessments have been developed using our proven, rigorous process that incorporates high quality assessment design, including using items that have a range of Cognitive Difficulty and Bloom's Taxonomy on each form. In this way, each assessment will yield valid and reliable data that teachers can use to drive instructional decisions to ensure that every student is achieving in terms of the new Common Core Standards.

To ensure the creation of high quality passages, items, and assessments time after time, Riverside has established processes and procedures with accompanying checklists that guide content and assessment development. Periodically the processes and procedures are modified to keep pace with changes in assessment or educational philosophies or to adjust to improved technology. Each time changes are implemented, checklists and other forms of documentation are revised to maintain quality and stay current with today's standards in test publishing. Creating a reliable and valid assessment requires developers and editors to carefully evaluate test materials so that students find them relevant, interesting, and engaging but not offensive, troubling, or distracting. In an effort to achieve this delicate balance, Riverside analyzes the following key elements when developing every assessment:

- Bias and sensitivity
- Representational fairness
- Language usage
- Stereotyping
- Controversial or emotionally charged subject matter
- Historical context

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

MATHEMATICS GRADE 2

					Cognitiv	e Di	fficu			oon	's	axo	nom	
Domain	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Domain } \end{gathered}$	Cluster	Items per Cluster	Standard	\# items	$\stackrel{-}{0}$ 0 0 0 \vdots \vdots 0 0		-		¢	-	$\frac{\square}{\text { D }}$	軆	
		Represent and Solve Problems Involving Addition and Subtraction	3	Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions. E.g. by using drawings and equations with a symbol for the unknown number to represent the problem.	3		1	2			2	1		
Operations and Algebraic	9	Add and Subtract within 20.	3	Fluently add and subtract within 20 using mental strategies. By end of grade 2, know from memory all sums of two one-digit numbers.	3		3			2	1			
Thinking		Work with equal groups of objects to	3	Determine whether a group of objects (up to 20) has an odd or even number of members, e.g.. by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.	2	1	1			1	1			
		gain foundations for multiplication.		Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	1		1			1				
		d Place Value	5	Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. 100 can be thought of as a bundle of ten tens - called a "hundred". b. The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	1		1		1					
				Count within 1000; skip-count by 5 s , 10s, and 100s.	1			1				1		
				Read and write numbers to1000 using base-ten numerals, number names, and expanded form.	2	2			1	1				
				Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons	1	1						1		
Operations in Base Ten	9			Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or relationship between addition and subtraction.	1		1				1			
				Add up to four two-digit numbers using strategies based on place value and properties of operations.	1		1				1			
		understanding and Properties of Operations to add and subtract.	4	Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	1			1			1			
				Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.	1	1				1				

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

MATHEMATICS GRADE 2

					Cognitiv	Dif	fficu			oon	's	axo	nom	
Domain	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Domain } \end{gathered}$	Cluster	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Cluster } \end{gathered}$	Standard	\# items	- 0		¢		¢	Co	$\frac{\stackrel{0}{0}}{\frac{1}{0}}$	嵒	co $\frac{0}{10}$ $\frac{10}{0}$ in
				Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.	1		1				1			
			3	Estimate lengths using units of inches, feet, centimeters, and meters.	1		1			1				
				Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	1			1			1			
		Relate addition an	3	Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.	1		1				1			
		subtraction to length		Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.	2		1	1				2		
				Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.	1		1					1		
and Data and Geometry	15	Work with time and money	3	Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $\$$ and $¢$ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?	2	1	1			1	1			
		Represent and Interpret data	3	Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	3		3				1	2		
				Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.	1		1			1				
		Reason with shapes and	3	Partition a rectangle into rows and columns of same-size squares and count to find the total number of them.	1		1			1				
				Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of,etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.	1	1					1			
	33		33		33	7	2	6	2	1	13	8		

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

					Cognitiv	e Dit	fficu			oom	's	axon	nomy	
Domain	Items per Domain	Cluster	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Cluster } \end{gathered}$	Standard	\# items	$\begin{array}{\|l} \hline \frac{5}{9} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$		-	-		coil		㻃	
		Represent and s		Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.	1		1			1				
		problems involving multiplication and division	3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. 1	1		1				1			
				Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=\square \div 3,6 \times 6=$? .	1		1				1			
Operations and Algebraic Thinking	9	Understand properties of multiplication and the relationship between	2	Apply properties of operations as strategies to multiply and divide. 2 Examples: If $6 \times 4=$ 24 is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) 3 $\times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8 \times 2)=40+16=56$. (Distributive property.)	1			1			1			
				Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .	1	1				1				
		Multiply and divide within 100	2	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=$ 8) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	2	1	1		2					
		Solve problems involving the four operations, and identify and explain patterns in arithmetic	2	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. 3	2			2			2			
				Use place value understanding to round whole numbers to the nearest 10 or 100.	4	3	1			4				
Number and Operations in	9	understanding and properties of operations	9	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	3		2	1			3			
		to perform multi-digit arithmetic.		Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times 80,5$ $\times 60$) using strategies based on place value and properties of operations.	2	2			2					

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 3

					Cognitiv	e Diff	fficu			oom	's T	axo	nom	
Domain	Items per Domain	Cluster	Items per Cluster	Standard	\# items	-	$\begin{array}{\|l\|} \hline \frac{N}{N} \\ \hline \mathbf{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	¢		¢	cres	$\frac{\square}{\text { en }}$	㻃	
				Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / \mathrm{b}$.	2		2			2				
Number and				Understand a fraction as a number on the number line; represent fractions on a number line diagram. a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number 1/b on the number line. b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.	3		2	1				3		
Operations Fractions	9	Develop understanding of fractions as numbers	9	Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. b. Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model. c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=$ 6 ; locate $4 / 4$ and 1 at the same point of a number line diagram. d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.	4		4				2	2		
		Solve problems involving measurement and		Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	1		1				1			
Measurement and Data and Geometry	11	estimation of intervals of time, liquid volumes, and masses of objects.	2	Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). 6 Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. 7	1		1				1			
		Represent and interpret data.	2	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	2		2			2				

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 3

Domain	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Domain } \end{gathered}$	Cluster	Items per Cluster	Standard	Cognitive Difficulty				Bloom's Taxonomy					
					\# items	-		¢		\%	Cois		嵒	co $\frac{0}{10}$ $\frac{10}{10}$ U10
Continued Measurement and Data and Geometry	11	Geometric measurement: understand concepts of area and relate area to multiplication and to addition.	3	Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	1		1			1				
				Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).	1		1				1			
				Relate area to the operations of multiplication and addition. a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. b. Multiply side lengths to find areas of rectangles with wholenumber side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $\mathrm{b}+\mathrm{c}$ is the sum of $\mathrm{a} \times \mathrm{b}$ and $\mathrm{a} \times \mathrm{c}$. Use area models to represent the distributive property in mathematical reasoning. d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the nonoverlapping parts, applying this technique to solve real world problems.	1	1				1				
		Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.	2	Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	2			2			2			
		Reason with shapes and	2	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	1		1			1				
				Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.	1		1					1		
	38		38		38	8	23	7	4	13	15	6	0	0

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

RIVERSIDE
成 HOUGHTON MIFFLIN HARCOURT

Grade 4: 2 of 3: See previous page.

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

RIVERSIDE

					Cognitiv	e Diff	fficu			oom	's	Taxo	nom	
Domain	Items per Domain	Cluster	Items per Cluster	Standard	\# items			¢		¢	co	$\begin{array}{\|l\|} \frac{0}{0 n} \\ \frac{2}{6} \\ \frac{5}{4} \end{array}$		
				Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.	2		2				2			
eration	9	Write and interpret numerical expressions	5	Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2 " as $2 \times(8+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.	3	3				3				
Algebraic Thinking		Analyze patterns and relationships.	4	Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3 " and the starting number, and given the rule "Add 6 " and the starting number, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	4		2	2				4		
				Recognize that in a multi-digit number, a digit in one place represents 1 times as much as it represents in the place to its right and $1 / 1$ of what it represents in the place to its left.	1		1		1					
		derstand the		Explain patterns in the number of zeros of the product when mulyiplying a number by powers of 1 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 1 . Use whole-number exponents to denote powers of 1.	1			1		1				
Number and Operations	9	place value system.	5	Read, write, and compare decimals to thousandths. a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 1+4 \times 1+7 \times 1+3 \times(1 / 1)+9 \times(1 / 1)+2 \times(1 / 1)$ b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	2	1	1		1	1				
in Base Ten				Use place value understanding to round decimals to any place.	1		1			1				
				Fluently multiply multi-digit whole numbers using the standard algorithm.	1		1				1			
		Perform operations with multi-digit whole numbers and with decimals to	4	Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	1		1					1		
				Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	2		1	1			1	1		
Number and		Use equivalent fractions		Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+$ $5 / 4=8 / 12+15 / 12=23 / 12$. (In general, $a / b+c / d=(a d+b c) b d$.)	1		1				1			
Operations Fractions	9	as a strategy to add and subtract fractions.	3	Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result $2 / 5+1 / 2=3 / 7$, by observing that $3 / 7<1 / 2$..	2		2					2		

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 5

Domain	Items per Domain	Cluster	$\begin{aligned} & \text { Items } \\ & \text { per } \\ & \text { Cluster } \end{aligned}$	Standard	Cognitive Difficulty				Bloom's Taxonomy					
					\# items				¢	c	¢	$\frac{\stackrel{\text { a }}{0}}{\frac{0}{0}}$		-
Continued Number and Operations Fractions	9	Apply and extend previous understandings of multiplication and division to multiply and divide fractions.	6	Interpret a fraction as division of the numerator by the denominator $(a / b=a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4 , noting that $3 / 4$ multiplied by 4 equals 3 , and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 5 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie.	1		1				1			
				Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product $(\mathrm{a} / \mathrm{b}) \times \mathrm{q}$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $\mathrm{a} \times \mathrm{q} \div \mathrm{b}$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)=a c / b d$.) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	1		1				1			
				Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .	1	1				1				
				Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem...	1		1					1		
				Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. a. Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because $(1 / 12) \times 4=1 / 3$. b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div(1 / 5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div(1 / 5)=2$ because $2 \times(1 / 5)=4$ c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $1 / 3$-cup servings are in 2 cups of raisins?	2		1	1			1	1		

Grade 5: 2 of 3: See previous page.

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

Domain	Items per Domain	Cluster	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Cluster } \end{gathered}$	Standard	Cognitive Difficulty				Bloom's Taxonomy					
					\# items	$\begin{aligned} & \hline \left.\begin{array}{l} \overline{0} \\ \overline{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\, \end{aligned}$		¢	\% 0 0 0	¢	-	$\frac{\stackrel{0}{10}}{\frac{10}{0}}$	軆	¢ $\frac{0}{10}$ $\frac{10}{10}$ in
Measurement and Data	9	Convert like measurement units within a given measurement system.	3	Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to .5 m), and use these conversions in solving multi-step, real world problems	3		3			3				
		Represent and interpret data.	3	Make a line plot to display a data set of measurements in fractions of a unit (1/2, $1 / 4$, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally.	3		1	2			1	2		
		Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.		Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.	1	1				1				
				Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised units.	1		1		1					
			3	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. b. Apply the formulas $\mathrm{V}=\mathrm{I} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{b} \times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two nonoverlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.	1			1				1		
Geometry	9	Graph points on the coordinate plane to solve real-world and mathematical problems.	4	Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x -coordinate, y -axis and y -coordinate).	2	1	1		1	1				
				Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	2		1	1				2		
		Classify two-dimensional figures into categories based on their properties..	5	Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.	3	2	1			3				
				Classify two-dimensional figures in a hierarchy based on properties.	2		1	1				2		
	45		45		45	9	26	1	4	15	9	17		

Grade 5: 3 of 3: See previous page.

RIVERSIDE
R HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 6

RIVERSIDE
H HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 6

RIVERSIDE
ค HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 6

Domain	$\begin{array}{\|c\|} \text { Items } \\ \text { per } \\ \text { Domain } \end{array}$	Cluster	$\begin{array}{\|c\|} \hline \text { Items } \\ \text { per } \\ \text { Cluster } \end{array}$	Standard	Cognitive Difficulty				Bloom's Taxonomy				
					\# items	-	N	¢		¢	¢	雩	
Continued The Number System	2	Continued Apply and extend previous understandings of numbers to the system of rational numbers.	2	Understand ordering and absolute value of rational numbers. a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right. b. Write, interpret, and explain statements of order for rational numbers in realworld contexts. For example, write $-3 \circ \mathrm{C}>-7 \circ \mathrm{O}$ to express the fact that $-3 \circ \mathrm{C}$ is warmer than -7 oC c. Understand the absolute value of a rational number as its distance from on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -3 dollars, write $\|-3\|=3$ to describe the size of the debt in dollars. d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -3 dollars represents a debt greater than 3 dollars.	1		1				1		
				Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	1		1				1		
				Write and evaluate numerical expressions involving whole-number exponents.	1		1			1			
Expressions and Equations	9	Apply and extend previous understandings of arithmetic to algebraic expressions.	2	Write, read, and evaluate expressions in which letters stand for numbers. a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-\mathrm{y}$. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms. c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving wholenumber exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s 3$ and $A=6 s 2$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	1		1			1			

RIVERSIDE
H HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 6

Domain	ItemsperDomain	Cluster	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Cluster } \end{gathered}$	Standard	Cognitive Difficulty				Bloom's Taxonomy					
					\# items			¢	¢		¢	$\frac{\stackrel{\omega}{0}}{\frac{0}{0}}$	号	-
Continued Expressions and Equations	9	Continued Apply and extend previous understandings of arithmetic to algebraic expressions.	2	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression 6 $+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	1		1			1				
				Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $\mathrm{y}+\mathrm{y}+\mathrm{y}$ and 3 y are equivalent because they name the same number regardless of which number y stands for.	1		1			1				
		Reason about and solve one-variable equations and inequalities.	4	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	1	1				1				
				Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	1		1			1				
				Solve real-world and mathematical problems by writing and solving equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}$ and $\mathrm{px}=\mathrm{q}$ for cases in which p, q and x are all nonnegative rational numbers.	1		1				1			
				Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a realworld or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	1		1					1		
		Represent and analyze quantitative relationships between dependent and independent variables.	1	Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $\mathrm{d}=65 \mathrm{t}$ to represent the relationship between distance and time.	1			1				1		

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 6

					Cognitiv	Dif	ifficu	ulty		oom	's	axo	nomy	
Domain	Items per Domain	Cluster	Items per Cluster	Standard	\# items	$\stackrel{-}{9}$ 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0	∞ 0 0 0 0 0 0 0 0	¢ 0 		\%	$\frac{.0}{10}$		
				Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	3	1	2					3		
Geometry	9	Solve real-world and mathematical problems involving area, surface	9	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $\mathrm{V}=\mathrm{l} \mathrm{wh}$ and $\mathrm{V}=\mathrm{b} \mathrm{h}$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	2		1	1		1	1			
		area, and volume.		Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving realworld and mathematical problems.	2		1	1			2			
				Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	2		1	1			2			
				Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	2	1	1			2				
		Develop understanding of statistical variability.	5	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	1	1			1					
				Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	2	1	1			2				
Statistics and Probability	9			Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	2		1	1		2				
		Summarize and describe distributions.	4	Summarize numerical data sets in relation to their context, such as by: a. Reporting the number of observations. b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement. c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	2		1	1				2		
	45		45		45	1	26	9	4	16	15	1		

Grade 6: 5 of 5: See previous page.

RIVERSIDE
水 HOUGHTON MIFFLIN HARCOURT

					Cognitiv	Di	ifficu			oom	's	Taxo	nom	
Domain	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Domain } \end{gathered}$	Cluster	$\begin{aligned} & \text { Items } \\ & \text { per } \\ & \text { Cluster } \end{aligned}$	Standard	\# items	$\begin{aligned} & \text { I } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{o} \\ & \mathbf{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			¢	¢	-	㻃	
Ratios and		Analyze proportional relationships and use them		Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour.	2		2				2			
Proportional Relationships	8		8	Recognize and represent proportional relationships between quantities.	3	1	2		1		2			
		mathematical problems.		Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	3		2	1			2	1		
		Apply and extend previous		Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and	3	1	2			1	2			
The Number System	9	understandings of operations with fractions to add, subtract, multiply,	9	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	3		2	1		1	1	1		
		and divide rational numbers.		Solve real-world and mathematical problems involving the four operations with rational numbers.1Computations with rational numbers extend the rules for manipulating fractions to	3	3			1		2			
				Apply properties of operations as strategies to add, subtract, factor,	2	1	1			1	1			
		Use properties of operations to generate equivalent expressions.	4	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a +.5 a $=1.5 \mathrm{a}$ means that "increase by 5% " is the same as "multiply by 1.5."	2	2			2					
Expressions and Equations	9	Solve real-life and mathematical problems using numerical and algebraic expressions and equations.	5	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making $\$ 25$ an hour gets a 1% raise, she will make an additional $1 / 1$ of her salary an hour, or $\$ 2.5$, for a new salary of $\$ 27.5$. If you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.	3		2	1		2	1			
				Use variables to represent quantities in a real-world or mathematical	2		2				2			

RIVERSIDE
水 HOUGHTON MIFFLIN HARCOURT

					Cognitiv	e Di	ifficu			oom	's	Taxo	nom	
Domain	Items per Domain	Cluster	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { cluster } \end{gathered}$	Standard	\# items	$\begin{array}{\|l} \hline \frac{7}{9} \\ \overline{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \hline \mathbf{N} \\ & \mathbf{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \mathbf{0} \\ & 0 \\ & \hline \end{aligned}$	¢			¢	$\frac{\text { a }}{\frac{0}{0}}$		-
				Solve problems involving scale drawings of geometric figures,	2		1	1			1	1		
		describe geometrical figures and describe the	3	Draw (freehand, with ruler and protractor, and with technology)										
		relationships between them.		Describe the two-dimensional figures that result from slicing threedimensional	1		1				1			
Geometry	9	Solve real-life and		Know the formulas for the area and circumference of a circle and use	2		1	1			1	1		
		mathematical problems involving angle measure	6	Use facts about supplementary, complementary, vertical, and adjacent	2		1	1			1	1		
		area, surface area, and volume.		Solve real-world and mathematical problems involving area, volume	2		1	1			1	1		
		Use random sampling to draw inferences about a population.	3	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	1		1					1		
				Use data from a random sample to draw inferences about a population	2		2			1		1		
		Draw informal comparative		Informally assess the degree of visual overlap of two numerical	2		1	1				2		
		inferences about two populations.	3	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about	1		1				1			
Statistics and Probability	10			Understand that the probability of a chance event is a number between and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	1		1			1				
		processes and develop, use, and evaluate	4	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative	1			1				1		
				Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.	1	1				1				
				Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.	1	1			1					
	45		45		45	1	26	9	5	8	21	11		

RIVERSIDE
H HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 8

					Cognitiv	Diff	ffic			oom	's	Taxo	nom	
Domain	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Domain } \end{gathered}$	Cluster	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Cluster } \end{gathered}$	Standard	\# items	- 0 0 0 0 0 0 0 0	N 9 0	∞ 0 0 0 0 0 0 0 0 0	O 0 0 	¢	-		㻃	\%
		Understand congrue		Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	1		1				1			
		and similarity using physical models,	3	Describe the effect of dilations, translations, rotations, and reflections on twodimensional figures using coordinates.	1	1				1				
Geometry	9	transparencies, or geometry software.		Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two dimensional figures, describe a sequence that exhibits the similarity between them.	1		1				1			
		Understand and apply the	3	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	2		1	1			1	1		
		Pythagorean Theorem.		Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	1			1				1		
		Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.	3	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	3		2	1			2		1	
		Know that there are		Understand informally that every number has a decimal expansion; the rational numbers are those with decimal expansions that terminate in Os or eventually repeat. Know that other numbers are called irrational.	4	2	2			2	2			
The Number System	9	numbers that are not rational, and approximate them by rational numbers.	9	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., $\pi 2$). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue on to get better approximations.	5	1	3	1			3	2		

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT
MATHEMATICS GRADE 8

Grade 8: 2 of 3: See previous page

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

					Cognitiv	e Dit	fficu			oom	's	axo	nom	
Domain	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Domain } \end{gathered}$	Cluster	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Cluster } \end{gathered}$	Standard	\# items			-			¢		-	
				Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	2		2					2		
				Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	2	2				2				
Statistics and Probability	8	Investigate patterns of association in bivariate data.	8	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of $1.5 \mathrm{~cm} / \mathrm{hr}$ as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.	2		2				2			
				Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	2		1	1			1	1		
				Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	2	1	1		1		1			
		Define, evaluate, and compare functions.	4	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	1		1				1			
Functions	9			Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.	1	1				1				
		Use functions to model relationships between	5	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	3		3				3			
				Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	2		1	1			1	1		
	45		45		45	9	27	9	1	9	25	9	1	

Grade 8: 3 of 3: See previous page.

RIVERSIDE

	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Subject } \end{gathered}$	Domain	Standard	Cognitive Difficulty				Bloom's Taxonomy					
Subject				\# items	$\stackrel{-}{0}$ 0 0 0 0 0		¢		¢	C		㻃	¢
Algebra	10	Seeing Structure in Expressions	Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.	2	1	1			1	1			
			b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+r) \mathrm{n}$ as the product of P and a factor not depending on P .	1		1			1				
		Creating Equations	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	1			1				1		
			Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	1		1				1			
			Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V=I R$ to highlight resistance R.	1		1				1			
		Reasoning with Equations and Inequalities	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	1	1				1				
			Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	2	1	1				1	1		
			1Graph the solutions to a linear inequality in two variables as a halfplane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	1			1				1		

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

Subject	$\begin{aligned} & \text { Items } \\ & \text { per } \\ & \text { Subject } \end{aligned}$	Domain	Standard	Cognitive Difficulty				Bloom's Taxonomy					
				\# items		N 0	¢			-	$\frac{\square}{10}$	\%	
Functions	12	Interpreting Functions	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	1		1				1			
			Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	1	1					1			
			Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$.	1			1			1			
			Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	1			1				1		
			Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	1		1				1			
		Building Functions	Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context.	1		1				1			
			Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	1		1				1			
			Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	1	1				1				
		Linear, Quadratic and Exponential Models	Distinguish between situations that can be modeled with linear functions and with exponential functions. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	1		1			1				
			c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	1		1					1		
			Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	1	1				1				
			Interpret expressions for functions in terms of the situation they model	1		1					1		

RIVERSIDE
水 HOUGHTON MIFFLIN HARCOURT

Subject	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Subject } \end{gathered}$	Domain	Standard	Cognitive Difficulty				Bloom's Taxonomy					
				\# items	-	N 0	¢	\% 	¢	-	$\frac{\square}{10}$	雨	
Geometry	9	Congruence	Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	1	1			1					
			Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).	1		1				1			
			Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	1		1			1				
			Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	1		1					1		
			1Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	1		1				1			
		Expressing Geometric Properties with Equations	Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	3		2	1		2	1			
			Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	1			1				1		
Stats and Probability	9	Interpreting Categorical and Quantitative Data	Represent data with plots on the real number line (dot plots, histograms, and box plots).	2	1	1		1	1				
			Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	1			1				1		
			Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	1		1				1			
			Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	2		2				2			
		Conditional Probability and the Rules of Probability	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	1		1					1		
			Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.	1		1					1		
			Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model.	1		1					1		
	40			40	8	25	7	2	10	16	12	0	0

RIVERSIDE

Grade 10: 1 of 3: Continued on next page.

RIVERSIDE
水 HOUGHTON MIFFLIN HARCOURT

Subject	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Subject } \end{gathered}$	Domain	Standard	Cognitive Difficulty				Bloom's Taxonomy					
				\# items	\square 0	N 0	¢	0 8 0 0 	¢	-	$\frac{\square}{\text { en }}$	雨	
Continued Algebra	12	Building Functions	Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context.	1		1				1			
			b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model."	1		1				1			
			Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $\mathrm{f}(\mathrm{x})=2 \mathrm{x} 3$ for $\mathrm{x}>0$ or $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) /(\mathrm{x}-1)$ for $\mathrm{x} \neq 1$.	1			1				1		
		Linear, Quadratic and Exponential Models	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	1	1				1				
			Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	1		1			1				
			Interpret expressions for functions in terms of the situation they model	1		1					1		
		Trigonometric Functions	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle	1	1				1				
			Prove the Pythagorean identity $\sin 2(\theta)+\cos 2(\theta)=1$ and use it to calculate trigonometric ratios.	2	1	1				1	1		
		Congruence	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	1			1			1			
			Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	1		1					1		
			1Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.	1			1				1		
		Similarity, Right Triangles, and Trigonometry	Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	1			1				1		
			Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.	1	1				1				
			Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	1		1					1		
			Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.	1		1				1			

RIVERSIDE
HOUGHTON MIFFLIN HARCOURT

MATHEMATICS GRADE 10

Subject	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Subject } \end{gathered}$	Domain	Standard	Cognitive Difficulty				Bloom's Taxonomy					
				\# items		$\begin{array}{\|l} \hline \mathbf{N} \\ \hline \mathbf{9} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	∞ 0 0 0 0 0 0 0 0 0 0		¢	-		㗭	¢ $\frac{0}{10}$ $\frac{10}{01}$ in
Continued Algebra	12	Circles	Prove that all circles are similar.	1		1				1			
			Identify and describe relationships among inscribed angles, radii and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.	1	1				1				
			Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	1		1					1		
		Expressing Geometric Properties with Equations	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	3		3				2	1		
			Derive the equation of a parabola given a focus and directrix.	1		1				1			
		Geometric Measurement and Dimension	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.	2	1	1			1	1			
		The Real Number System	Rewrite expressions involving radicals and rational exponents using the properties of exponents.	3	1	2			1	1	1		
		Quantities	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	2	1	1			1	1			
			Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	1			1				1		
		The Complex Number System	Know there is a complex number i such that $\mathrm{i} 2=-1$, and every complex number has the form $\mathrm{a}+\mathrm{bi}$ with a and b real.	1	1				1				
			Use the relation i2 =-1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	1		1				1			
			Solve quadratic equations with real coefficients that have complex solutions.	1			1				1		
	51			51	11	29	11	0	11	23	17	0	0

RIVERSIDE
~~ HOUGHTON MIFFLIN HARCOURT

				Cognitiv	Dif	ifficu			oon	's	Taxo	nom	
Subject	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Subject } \end{gathered}$	Domain	Standard	\# items		$\begin{array}{\|c} \hline \mathbf{N} \\ \mathbf{0} \\ 0 \\ \mathbf{d} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	∞ 0 0 0 0 0 0 0		¢	-	-	霏	¢
		Se	Interpret expressions that represent a quantity in terms of its context. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P.	1		1					1		
		Structure in Expressions	Use the structure of an expression to identify ways to rewrite it. For example, see $\mathrm{x} 4-\mathrm{y} 4$ as (x 2) $2-(\mathrm{y} 2) 2$, thus recognizing it as a difference of squares that can be factored as (x2-y2)(x2+y2).	1		1				1			
			Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.	1		1				1			
			Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	1		1				1			
		Arithmetic with Polynomials and Rational	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	1			1				1		
Algebra	12		Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	1			1				1		
			Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	1		1				1			
		Creating Equations	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	1	1				1				
			Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $\mathrm{V}=\mathrm{IR}$ to highlight resistance R .	1		1				1			
		Reasoning with	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	2		2				1	1		
		Equations and Inequalities	Graph the solutions to a linear inequality in two variables as a halfplane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	1			1				1		

RIVERSIDE
水 HOUGHTON MIFFLIN HARCOURT

Subject	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Subject } \end{gathered}$	Domain	Standard	Cognitive Difficulty				Bloom's Taxonomy					
				\# items	\square 0		¢	¢	c	coil	$\frac{\square}{\text { en }}$		cos
Functions	14	Interpreting Functions	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	1		1				1			
			Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	1		1				1			
			Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	1		1				1			
			c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.	1		1				1			
			Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02) t, y=(0.97) t, y=(1.01) 12 t, y=(1.2) t / 10$, and classify them as representing exponential growth or decay.	1			1				1		
		Building Functions	Write a function that describes a relationship between two quantities. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.	1		1				1			
			Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	1	1				1				
			Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $\mathrm{f}(\mathrm{x})=2 \mathrm{x} 3$ for $\mathrm{x}>0$ or $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) /(\mathrm{x}-1)$ for $\mathrm{x}=1$.	1			1				1		
		Linear, Quadratic and Exponential Models	Distinguish between situations that can be modeled with linear functions and with exponential functions. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	1			1				1		
			Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	1	1				1				
			For exponential models, express as a logarithm the solution to $\mathrm{abct}=\mathrm{d}$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	1		1				1			
		Trigonometric Functions	Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle	1	1				1				
			Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline	2		1	1			2			

RIVERSIDE
水 HOUGHTON MIFFLIN HARCOURT

Subject	$\begin{gathered} \text { Items } \\ \text { per } \\ \text { Subject } \end{gathered}$	Domain	Standard	Cognitive Difficulty				Bloom's Taxonomy					
				\# items		$\begin{aligned} & \hline \mathbf{N} \\ & \mathbf{o} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	-		¢	¢	$\frac{\text { a }}{\text { 号 }}$	-	
Geometry	9	Geometric Measurement and Dimension	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.	4	1	3			1	2	1		
			Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify threedimensional objects generated by rotations of two-dimensional objects.	2		2				2			
		Modeling with Geometry	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).	1		1				1			
			Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).	1		1				1			
			Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typograhic grid systems based on ratios).	1		1				1			
Stats and Probability	9	Interpreting Categorical and Quantitative Data	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	1	1				1				
			Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	1		1			1				
			Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	1		1					1		
		Making Inferences and Justifying Conclusions	Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model?	1			1				1		
			Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.	1	1				1				
			Evaluate reports based on data.	1	1				1				
		Conditional Probability and the Rules of Probability	Understand the conditional probability of A given B as $\mathrm{P}(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{B})$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.	1		1				1			
			Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.	1		1				1			
			Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$, and interpret the answer in terms of the model.	1		1				1			
	44			43	7	28	8	0	8	24	11	0	0

Riverside Interim Assessments
 Local Scanning Requirements

Administering the Riverside Interim Assessments is easy and convenient. Just follow these steps:

- Download and print answer documents using plain paper
- Scan the completed answer documents locally, using one of these approved scanners
- You will then receive powerful web-based reporting

RIVERSIDE
HOUGHTON MIFFLIN HARCOURT

